top of page

"++" = equal contribution, "" = corresponding author

37. Mechanism of Ligand Binding to Theophylline RNA Aptamer. J. Chem. Inf. Model. (2024) ASAP. Akhter S, Tang Z, Wang J, Haboro M, Holmstrom ED, Wang J*, Miao Y*. 

36. Selected humanization of yeast U1 snRNP leads to global suppression of pre-mRNA splicing and mitochondrial dysfunction in the budding yeast. Chalivendra S, Shi S, Li X, Kuang Z, Giovinazzo J, Zhang L, Rossi J, Saviola AJ, Wang J, Welty R, Liu S, Vaeth K, Zhou ZH, Hansen KC, Taliaferro JM, Zhao R*. bioRxiv preprint. PMID: 38168357. 


35. Cryptic splicing mediates genetic and therapeutic perturbation of human gene expression levels. Fair B, Abad Najar CB, Zhao J, Lozano S, Reilly A, Staley J, Wang J, Li YI*. bioRxiv preprint. PMID: 37745605.

34. Structural and Biological Evaluations of a Non-Nucleoside STING Agonist Specific for Human STING-A230 Variants. Tang Z⁺⁺, Zhao J⁺⁺, Li Y⁺⁺, Tomer S, Selvaraju M, Tien N, Sun D, Johnson DK, Zhen A*, Li P*, Wang J*. bioRxiv preprint:

33. Chemical-guided SHAPE sequencing (cgSHAPE-seq) informs the binding site of RNA-degrading chimeras targeting SARS-CoV-2 5’ untranslated region. Tang Z⁺⁺, Hegde S⁺⁺, Hao S, Selvaraju M, Qiu J, Wang J*. bioRxiv preprint:

32. Cellular Target Deconvolution of Small Molecules using a Selection-based Genetic Screening Platform. ACS Cent. Sci., 8(10), 1424-1434 (2022). Zhao J, Tang Z⁺⁺, Selvaraju M⁺⁺, Johnson KA, Douglas JT, Gao PF, Petrassi, HM, Wang MZ, Wang J*. [Selected as the issue cover]

31. CRISPR-mediated Enzyme Fragment Complementation Assay for Quantification of the Stability of Splice Isoforms. ChemBioChem 23(9), e202200012 (2022). Tang Z⁺⁺, Hegde S⁺⁺, Zhao J⁺⁺, Zhu S, Johnson KA, Lorson CL, Wang J*

30. Inhibition of SARS-CoV-2 by targeting conserved viral RNA structures and sequences. Front. Chem., 9:802766 (2021). Hegde S⁺⁺, Tang Z⁺⁺, Zhao J, and Wang J*

29. High throughput screening identifies inhibitors for parvovirus B19 infection of human erythroid progenitors. J. Virol. JVI0132621 (2021). Ning K, Roy A, Cheng F, Xu P, Kleiboeker S, Escalante C, Wang J, and Qiu J*. 

28. Recognition of single-stranded nucleic acids by small-molecule splicing modulators. Nucleic Acids Res., 49(14), 7870 (2021). Tang Z, Akhter S⁺⁺, Ramprasad A⁺⁺, Wang X⁺⁺, Reibarkh M, Wang J, Aryal S, Thota SS, Zhao J, Douglas JT, Gao P, Holmstrom ED, Miao Y*, Wang J*

27. RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays. Molecules, 26(8), 2263. (2021). Tang Z, Zhao J, Pearson ZJ, Boskovic ZV, Wang J*

26. The RNA Architecture of the SARS-CoV-2 3′-Untranslated Region. Viruses, 12(12), 1473. (2020) Zhao J, Qiu J, Aryal S, Hackett JL, Wang J*.


25. Discovery of a potent GLUT inhibitor using rapafucin 3D microarrays. Angew. Chem. Int. Ed. 58,17158–62. (2019) Guo ZF⁺⁺, Cheng Z⁺⁺, Wang J⁺⁺, Liu W, Peng H, Wang Y, Rao AVS, Li RJ, Ying X, Korangath P, Liberti MV, Li Y, Xie Y, Hong SY, Schiene-Fischer C, Fischer G, Locasale JW, Sukumar S, Zhu H, Liu JO*.

24. Rapafucins, rapamycin-inspired macrocycles with new target specificity. (2019) Nat. Chem.,11(3):254-63. Guo ZF⁺⁺, Hong SY⁺⁺, Wang J⁺⁺, Rehan S, Liu W, Peng H, Das M, Li W, Bhat S, Peiffer B, Ullman BR, Tse CM, Tarmakova Z, Schiene-Fischer C, Fischer G, Coe I, Paavilainen VO, Sun Z, Liu JO*.

23. Using In Vitro and In-cell SHAPE to Investigate Small Molecule Induced Pre-mRNA Structural Changes. J. Vis. Exp. 143, e59021. (2019) Wang J, Hammond J, Johnson KA*.

22. Mechanistic studies of a small molecule modulator of SMN2 splicing, PNAS, 115(20): E4604-12. (2018) Wang J, Schultz PG, Johnson K.

21. Oligoribonuclease is the primary degradative enzyme for pGpG in P. aeruginosa that is required for cyclic-di-GMP turnover. PNAS, 112(36): E5048-57. (2015) Orr MW, Donaldson GP, Severin GB, Wang J, Sintim HO, Waters CM, Lee VT.

20. Essential roles of methionine and SAM in the autarkic lifestyle of Mycobacterium tuberculosis. PNAS 112(32): 10008-13. (2015) Berney M, Berney-Meyer L, Wong KW, Chen B, Chen M, Kim J, Wang J, Harris D, Parkhill J, Chan J, Wang F, Jacobs WR.

19. Octameric G8 c-di-GMP is an efficient peroxidase and this suggests that an open G-tetrad site can effectively enhance hemin peroxidation reactions. RSC Adv. 3(18): 6305-10. (2013) Roembke BT, Wang J, Nakayama S, Zhou J, Sintim HO.

18. Potent suppression of c-di-GMP synthesis via I-site allosteric inhibition of diguanylate cyclases with 2’-F-di-GMP, Bioorg. Med. Chem. 21(14), 4396-404. (2013) Zhou J, Watt S, Wang J, Nakayama S, Sayre DA, Lam YF, Lee VT, Sintim HO.

17. Selective binding of 2’-F-di-GMP to Ct-E88 and Cb-E43, new class I riboswitches from C. tetani and C. botulinum respectively. Mol. BioSys. 9(6): 1535-9. (2013) Luo Y, Zhou J, Wang J, Dayie K, Sintim HO.


16. Endo-S-di-GMP analogues-polymorphism and binding studies with class I riboswitch. Molecules 17(11): 13376-89. (2012). Zhou J, Sayre DA, Wang J, Pahadi N, Sintim HO. 


15. Inhibitors of fatty acid synthesis in prokaryotes and eukaryotes as anti-infective, anticancer and anti-obesity drugs. Future Med. Chem. 4(9):1113-51. (2012) Wang J, Hudson R, Sintim HO. 

14. Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues. ACS Chem. Biol. 7(6): 1023-30. (2012) Gamby S, Roy V, Guo M, Smith JAI, Wang J, Stewart JE, Wang X, Bentley WE, Sintim HO.

13. Effects on membrane lateral pressure suggest permeation mechanisms for bacterial quorum signaling molecules. Biochemistry 50(32): 6983-93. (2011) Kamaraju K, Smith J, Wang J, Roy V, Sintim HO, Bentley WE, Sukharev S.

12. Conservative change to the phosphate moiety of cyclic diguanylic monophosphate remarkably affects its polymorphism and ability to bind DGC, PDE, and PilZ proteins. J. Am. Chem. Soc. 133(24):9320-90. (2011) Wang J, Zhou J, Donaldson GP, Nakayama S, Yan L, Lam YF, Lee VT, Sintim HO. 

11. Differential radial capillary action of ligand assay for HTS detection of protein-metabolite interactions. PNAS 108(37): 15528-33. (2011) Roelofs KG, Wang J, Sintim HO, Lee VT.


10. DNA-based peroxidation catalyst—What is the exact role of topology on catalysis and is there a special binding site for catalysis? Chem. Eur. J. 17(20): 5691-8. (2011) Nakayama S, Wang J, Sintim HO.

9. Thiazole orange-induced c-di-GMP quadruplex formation facilitates a simple fluorescent detection of this ubiquitous biofilm regulating molecule. J. Am. Chem. Soc. 133(13):4856-64. (2011) Nakayama S, Kelsey I, Wang J, Roelofs K, Stefane B, Luo Y, Lee VT, Sintim HO.

8. C-di-GMP can form remarkably stable G-quadruplexes at physiological conditions in the presence of some planar intercalators. Chem. Commun. 47(16): 4766-8. (2011) Nakayama S, Kelsey I, Wang J, Sintim HO.

7. Dialkylamino-2,4-dihydroxybenzoic acids as easily synthesized analogues of platensimycin and platencin with comparable antibacterial properties. Chem. Eur. J. 17(12):3352-7. (2011) Wang J & Sintim HO. 


6. Synthetic analogs tailor native AI-2 signaling across bacterial species. J. Am. Chem. Soc. 132(32):11141-50.  (2010) Roy V, Smith JAI, Wang J, Stewart JE, Bentley WE, Sintim HO.

5. Remote C–H functionalization; using atom-economical tethers to switch between 1,5- and the rare 1,7-C–H insertions. Angew. Chem. Int. Ed. 49(23):3964-8. (2010) Wang J, Stefane B, Jaber D, Smith JA, Vickery C, Diop M, Sintim HO.


4. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med. Chem. 2(6):1005-35. (2010) Sintim HO, Smith JAI, Wang J, Nakayama S, Yan L.

3. Efforts towards the identification of simpler platensimycin analogs, the total synthesis of oxazinidinyl platensimycin. Chem. Eur. J. 15(12):2747-50. (2009) Wang J, Lee VT, Sintim HO.


2. Biological screening of a diverse set of AI-2 analogues in V. harveyi suggests that receptors which are involved in synergistic agonism of AI-2 and analogues are promiscuous. Chem. Commun. 45:7033-5. (2009) Smith JAI, Wang J, Nguyen-Mau SM, Lee VT, Sintim HO.

1. A computationally designed Rh(I)-catalyzed two-component [5+2+1] cycloaddition of ene-vinylcyclopropanes and CO for the synthesis of cyclo-octenones. J. Am. Chem. Soc. 129(33):10060-10061. (2007) Wang Y, Wang J, Su J, Huang F, Jiao L, Liang Y, Yang D, Zhang S, Wender PA, Yu ZX.

bottom of page